Construction of an Integrated Drought Monitoring Model Based on Deep Learning Algorithms
نویسندگان
چکیده
Drought is one of the major global natural disasters, and appropriate monitoring systems are essential to reveal drought trends. In this regard, deep learning a very promising approach for characterizing non-linear nature factors. We used multi-source remote sensing data such as Moderate Resolution Imaging Spectroradiometer (MODIS) Climate Hazards Group Infrared Precipitation with Station (CHIRPS) integrate impact factors precipitation, vegetation, temperature, soil moisture. The application convolutional long short-term memory (ConvLSTM) construct an integrated model was proposed tested, using Xinjiang Uygur Autonomous Region example. To better compare performance ConvLSTM models, three other classical models machine were also comparison. results show that composite index (CDI) output by had consistent high correlation rating multi-scale standardized precipitation evapotranspiration (SPEI). coefficients between CDI (SPI) all above 0.5 (p < 0.01), which highly significant, coefficient CDI-1 monthly relative humidity at 10 cm depth 0.45 well correlated. addition, spatial distribution CDI-6 simulated correlated degree expressed SPEI-6 observations stations. This study provides new regional monitoring.
منابع مشابه
an investigation of the impact of self monitoring on langauge teachers motivational practice and its effect on learners motivation
the central purpose of this study was to conduct a case study about the role of self monitoring in teacher’s use of motivational strategies. furthermore it focused on how these strategies affected students’ motivational behavior. although many studies have been done to investigate teachers’ motivational strategies use (cheng & d?rnyei, 2007; d?rnyei & csizer, 1998; green, 2001, guilloteaux & d?...
Evaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)
Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...
متن کاملmortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملthe effect of lexically based language teaching (lblt) on vocabulary learning among iranian pre-university students
هدف پژوهش حاضر بررسی تاثیر روش تدریس واژگانی (واژه-محور) بر یادگیری لغات در بین دانش آموزان دوره پیش دانشگاهی است. بدین منظور دو گروه از دانش آموزان دوره پیش دانشگاهی (شصت نفر) که در سال تحصیلی 1389 در شهرستان نور آباد استان لرستان مشغول به تحصیل بودند انتخاب شده و به صورت قراردادی گروه آزمایش و گواه در نظر گرفته شدند. در ابتدا به منظور اطمینان یافتن از میزان همگن بودن دو گروه از دانش واژگان، آ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2023
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs15030667